A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping

نویسندگان

  • Seyed Amir Naghibi
  • Hamid Reza Pourghasemi
چکیده

As demand for fresh groundwater in the worldwide is increasing, delineation of groundwater spring potential zones become an increasingly important tool for implementing a successful groundwater determination, protection, and management programs. Therefore, the objective of current study is to evaluate the capability of three machine learning models such as boosted regression tree (BRT), classification and regression tree (CART), and random forest (RF), and comparison of their performance by bivariate (evidential belief function (EBF)), and multivariate (general linear model (GLM)) statistical methods in the groundwater potential mapping. This study was carried out in the Beheshtabad Watershed, Chaharmahal-e-Bakhtiari Province, Iran. In total, 1425 spring locations were detected in the study area. Seventy percent of the spring locations were used for model training, and 30 % for validation purposes. Fourteen conditioning-factors were considered in this investigation, including slope angle, slope aspect, altitude, plan curvature, profile curvature, slope length (LS), stream power index (SPI), topographic wetness index (TWI), distance from rivers, distance from faults, river density, fault density, lithology, and land use. Using the above conditioning factors and different algorithms, groundwater potential maps were generated, and the results were plotted in ArcGIS 9.3. According to the results of success rate curves (SRC), values of area under the curve (AUC) for the five models vary from 0.692 to 0.975. In contrast, the AUC for prediction rate curves (PRC) ranges from 77.26 to 86.39 %. The CART, BRT, and RF machine learning techniques showed very good performance in groundwater potential mapping with the AUC Water Resour Manage DOI 10.1007/s11269-015-1114-8 * Hamid Reza Pourghasemi [email protected]; [email protected] Seyed Amir Naghibi [email protected] 1 Department of Watershed Management Engineering, College of Natural Resources, Tarbiat Modares University, Noor, Mazandaran, Iran 2 Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz, Iran values of 86.39, 86.12, and 86.05 %, respectively. By the way, The GLM and EBF models in comparison by machine learning models showed weaker performance in spring groundwater potential mapping by the AUC values of 77.26, and 67.72 %, respectively. The proposed methods provided rapid, accurate, and cost effective results. Furthermore, the analysis may be transferable to other watersheds with similar topographic and hydro-geological characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Bivariate and Multivariate Methods in Landslide Sustainability Mapping: A Case Study of Chelchay Watershed

1- INTRODUCTION In the last decades, due to human interventions and the effect of natural factors, the occurrence of landslide increased especially in the north of Iran, where the amount of rainfall is suitable for the landslide occurrence. In order to manage and mitigate the damages caused by landslide, the potential landslide-prone areas should be identified. In landslide susceptibili...

متن کامل

Machine Learning Algorithm for Prediction of Heavy Metal Contamination in the Groundwater in the Arak Urban Area

This paper attempts to predict heavy metals (Pb, Zn and Cu) in the groundwater from Arak city, using support vector regression model(SVR) by taking major elements (HCO3, SO4) in the groundwater from Arak city. 150 data samples and several models were trained and tested using collected data to determine the optimum model in which each model involved two inputs and three outputs. This SVR model f...

متن کامل

Probabilistic Landslide Risk Analysis and Mapping (Case Study: Chehel-Chai Watershed, Golestan Province, Iran)

The efficiency of three statistical models, AHP surface-weighted density bivariate (semi-quantitative models), stepwise multivariate regression and logistic multivariate regression models were compared in Chehel-Chai watershed in Golestan province, Iran. In current study the hazard map was prepared according to the top model of landslide hazard map. Chehel-Chai watershed is located as one of Go...

متن کامل

Comparison of classic regression methods with neural network and support vector machine in classifying groundwater resources

In the present era, classification of data is one of the most important issues in various sciences in order to detect and predict events. In statistics, the traditional view of these classifications will be based on classic methods and statistical models such as logistic regression. In the present era, known as the era of explosion of information, in most cases, we are faced with data that c...

متن کامل

Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches

Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015